conductivity; o, heat-transfer coefficient; Q, internal source strength; ¢ and f, temperature distributions at
beginning of process and on boundary of domain respectively; v, outward normal to boundary Ty; v, temperature
gradient; g, heat flux density; 7, fixed point on boundary Ty; D = D,XD,; Q = DX(0, tobls £ = D;X(0, topl.
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FINITE INTEGRAL TRANSFORMS FOR HEAT AND MASS
TRANSFER PROBLEMS IN NONSTATIONARY AND
INHOMOGENEOUS MEDIA

V. 8. Novikov UDC 536.2

Several boundary-value problems of heat and mass transfer are solved for equations with vary-
ing coefficients.

Integral transforms are widely used in solving transport problems, mostly described by equations with
constant coefficients. Important contributions in developing the method of finite integral transforms were
made by Grinberg [1], Tranter [2], the authors of [3-6], etc.

In the present study we construct finite integral transforms for several boundary-value problems of heat
and mass transfer, described by equations with varying coefficients. Kernels and norms of the transforms
and characteristic equations for finding eigenvalues are determined for these problems. In this case it is im-
portant to develop an approach to solving these equations, as suggested by the present author [7].

Consider the problem

a i) L oL O rvur)*az]ﬂ(f)cp(r) T g T+ W, 1), a
: ot ' or or or
R1<r<R2,[x<r)9f—+alT] — By 1),
ar r=R,
. @)
[h(r) £+a2TJ =By (),
or r=R,

where @, o, are constant, and ¥ = 0, 1, 2 are shape coefficients of the geometric region. We introduce the
notation

Ry .
f O @NT(r, Hydr =T (p, 1), ; (3
Ry ) P
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where ®(pr) is a kernel of a finite integral transform to be determined. Applying the scheme of [1-7], we
find that $(pr) and T(p, t) satisfy the equations

d 4¥ (pr) v d¥ (pr) v . D (
10 T @ e T — ) W) %0 () 0, ¥ o) = S

ot dT fﬁ’ D om0 pTp +ZOT (0,  +W(p, )+ K (p, 1). (5)
In (5) we denoted |
1 (g ¥ W, 1
gir, 7 (" v r,
()= dr, Wip, t)= @ (pr) — == dr; (6)
" ngle f o W= | P0G T dr -
K, ty—b) { P W on TED — o T 9 S84 e v T ]Rz- ™
Ry

From the independence condition of K(p, t) on values of the unknown function T(r, t) with account of boundary
conditions (2), we obtain that ¥(pr) must satisfy the relations

(8)

dv
MR) P 4 (o, — g (RO (0R) = O,
r=R,
MR) TN g — g (RY (pRy) = 0. (9)
dr r=R,
In this case K(p, t) acquires the form
Kp, y=0() [R:¥ (PRy) Py () — R{Y (PR B1 1. (10)
Equation (4) reduces to the following;:
v v dh \ d¥ v de 1
A — LA T Bt Y oo 2 \w g, (11)
(r)dz+<'@+r +dr)dr +(pf — @ dr)‘lf 0

Consider first the case -

7\,(7‘) — Kofﬂ—s , f(f) — rm—ﬁ’ (P(f) _ (Porn—e—l , 0 <8, 6< 1' (12)
Here )y, ¢, are constants, and m and n are arbitrary integers. Taking into account (12), Eq. (11) has a solu-
tion
(13)

I—a M 1—a

. M
2 2 7
‘F(pr):Ar223(7%—-1/br2>+3r2Z_s(—M—1/br2).

Here A and B are constants to be determined, and Zg is a cylindrical function whose analytic definition depends
on the constants appearing in the equation:

=n— ——-—(Pl . =1_ — 2 1/2 14
a=n—e-+v e _M[(l a)? — 4c} (14)
M=m—086—(n—e¢)+2,
2 15)
=—— — —1 =F (
” (n—e4+v—1), "

some of which can be either real or complex. It follows from (8) that
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1—a l—a-—-2 l—a
B V—a —5— —5 dZ,
2= [l — e R 7 L0l g, + 1R [ R % 2, + R 2 L) I x
A 2 dr r=R,
I—a 1 9 1 (16)
l—a —5 = d7 -1
x {[a1~cp (RN R % 2.y gt (R) [ SR T 2 g R }} = F(R),
: L ir=R,
9 p X
where yE——‘% -ﬁk: r’. In what follows we use as transform kernel the expression
/ g
1 17)

O () =1 ° [Zs w)+%z-s ) }i(r),

in which B/A is determined by relationship (16), The eigenvalues pi are the positive roots of the transcenden-
tal equation

1—a - l—a—2 l—a
' , l—a Lo T dZg
PR) =~ =0 QR Zalol o, 2R ISR 2 R |l

r=Re (18)

= M—a, 52 Sz, ~

XL R R T 2O, AR | SR T 2 Wl R T } :

; 2 2 2 : df —y
obtained from condition (9). Here function F(R,) is determined by expression (16).
The norm N’(py) of the transform is
R,

N2 = e Y D2 (pr d,ﬁ_,._l._ rvMD@_‘Ii_rV(p(qu ]Rz +__1__ ' (rvxﬂ Ei_(l)__rvcpwcidl) dr. 19)

(Pr) = ;i r par) dr = 2 dr R, pi j dr dr dr

1

The exact expression for the integral in (19) is quite awkward. Using the mean valuetheorem, wehave approx-
imately

1 Ay RYTY Ry Qpw, Ry, Ry
N2 (p z——{[ o _ _,k__*_}
DTSR RRr ReR TRy |
3 o RIT R Q(pp Ry RY] oo
XRE D (R ¥ ( R—[owr—i : - ]ch( R)Y (uR)|
@ o ) ¥ (prRy) T TR R ‘R2—~R1 ¥ (7R 1@ (PR ¥ (prR1) 20)
R, 7
- . _ s e
y=vtn—et+l, Qp, R, Ry)= r i O (pyr) dr. (21)
%, )
The solution of Eq. (5) is
- : f T : § N e (22)
Tlow =T (pw 0+ [ Eon tyexp ([ npw, tyar ydt Jexp (—{ nipw ) at'),
0 0 0
1 -
E(ph, t) = [W (pk, i)""" K(pk! t) ]: (23)
a ()
_ R,
T 0) = | 7' Tolr)® (pur) dr,
R,
nipy ) =28 2 2O .
. a () a(t)
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therefore the required function is

. {25)
T, )= 2T (pr ) D (par) N (py).
k=1
The summation here is performed over the eigenvalue pksubscript, being the positiveincreasing roots of Eq.
(18).

- Consider the more general equation

20i0 &= 2L 2L 10 S 10090 I s g 940 0, 26)

As previously, the transformant of the required function is determined by relationship (3). Applying the ap-
proach discussed above, we find that the function ¥(pr) = &(pr)/f(r) satisfies the equation

2
i +(2x—_+h—d-”—+—xh~cp ¥ .
ir d ar n

‘———-‘——:—(P-}-sz)‘I’:O.

L[ dh v dh de
(dr dr dr2 r dr dr

Consider the case when the functions A(r), f(r) are determined by relationship (12), and h(r), ¢(r) are h(r) =
hyrk-, @(r) = qoorl—q, where k, [ are arbitrary integers, and 0 = pu, 0 = 1. Requiring that the equality { —
o~ (n—¢g)~ (k—p) =1 be satisfied, Eq. (27) has a solution determined by relationship (13). The coefficients
a, s, M, ¢, b, however, which were earlier determined by expressions (14) and (15), acquire for Eq. (26) the
form

a=2k—m-+n—etv— —0_,

Aol (28)
= Ml [(1— e — 4c12, b — xii;,_ ,
M=m—8—(—&+2—(t—p), c=(k— (n—s+k—p/—1+v)_7‘:£0_(z—a+v). (29)
If the following boundary conditions are given for (26)
LI YO

r=R, (30)

oT
[ ()b () 2 +a2T] — B0,
ar r=R, .
the ratio B/A and the characteristic equation for finding eigenvalues for the kernel of the transform of equation
(26) are determined, with account of (28) and (29), by expressions (16) and (18), replacing in them A(r) by A(r) -
h(r). The norm of this transform is -

R,
1 [ 1 ¢ dd d (31)
(pt~_-———[ M0 4wy — chy] L { M2 L~ qf—— :
) p W) —rY R,+pi.\ — (h¥) — 'y
Since
4y (32)
A (Ry) b (Ry L2 +[ . (R PO —@(Rg}‘lf(pRi):o,
=R; dr r=R;
where i =1, 2, then approximately
1 Rz_v Ao R;v Q (P, Ry, Ra)]. v
N2 (py) A —— Nt MRy RID (p,R) ¥ (puRy) —
(Pr) 2 {[%—I— R RJE v (Ry) R R ¥ (nRy) 2@ (pRy) ¥ (PrRe
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PV e
[t e TRt Bl

(Ro—Ry v Ry—R, Y(nR)

] RI® (p,R) ¥ (pR)! . (33)

By (26) the transformant T(r, t) has the form (22), where the functions E(py, t), T(pk, 0), n(pk, t) and K (pk, t)
are determined by expressions (23), (24), and (10). In this case the transform kernel is chosen to be (17),
where a, s, b, M, and ¢ are determined by relations (28) and (29), and the function A(r) is replaced by A(r)h(r).
The solution of Eq. (26) is of the form (25), in which case the norm of the transform is chosen by expression
(33).

The transfer equations under consideration have a very wide range of application. They underlie mathe-
matical models of turbulent transfer in the atmosphere and of many thermotechnological processes. Equations
for geopotential tendency, used for weather prediction, as well as many problems of convective thermal con-
ductivity (dlffusmn) reduce to them.

The method suggested for solving these equations is easily realized for the region 0 = r = R and for
other combinations of boundary conditions.

A method was suggested in [7] of solving the equation of convective diffusion with a source in the form of
an arbitrary function of coordinates. The method is generalized below to the case of the more general problem

oC oC 1%) C

e, )2 ot 2 =Dy Ly ) ] £, O+ F b, (34)
ox dy dy oy

Climo = 0. ?a% =0, C(0, 9)=Co1). (35)

Equation (34) describes convective diffusion in a flow in a planar channel of width H under conditions of total
absorption of the diffusing component at the channel walls. The coordinate dependence of the diffusion coeffi~
cient D = Dyy (%, ¥), Dy = const must be accounted for, e.g., when the temperature and pressure in the flow
depend strongly on coordinates.

We choose a stream function ¥, such that u = 0%/8y, v = —8¥/8x, and transform from the coordinate
system (x, y) to the system (x, ¥}, in which

oc| _sc| 8¢ ¢ o e
ox |y, 0% |w oY 6y 6‘1’
and Eq. (34) is
ac 3 c1, 1 1 (37)
= =D, Vyu— |+ —fx ¥)C+ — F(x, ¥).
- N[w )uﬂ,]vuﬂx )€+ - Fix ¥)
1 1
Let uzﬁﬁ((gr)—) (the case m(llf)z‘lf?, n(x):x“ was considered in [7]), and v (X, ¥) = Q(¥)N(x). We apply
n{x

the scheme of finite integral transforms; we find that the kernel of the transform &®(p¥) and the transformant
of the required function satisfy the equations

d a7 (38)
- [ (%) Q¢ )dq,} o,
dc 9 ~ 1 . 1 =
1 (x) —d; = —BDypiN (x) C + Tj‘ nx)Zx)C + —(3_ e (x) W {x, pr) — K (0, x), (39)
ac i
K(py 2) =nx) qx O (p¥)lg_g. ¢(x) =D () “‘
y~0 '

D(x) = DoN () Q(¥,), Dy = DY, ¥, — const ¥,

~ 1% flx, W)
C= § Clx, V) (p,V)d¥, Z(x)= Efo—‘ e

av,;
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',
W (x, p) = S %(_’(‘—g—)mdw. (40)

Since in variables (x, ¥) conditions (35) are of the form Cl\yzo =0, 80/8\1/‘\1’:% =0, ¥ = \Illy=H/2’ the
eigenvalues are found from the equation dq’(qu)/d\lrqu;\y =0,
=¥

We further consider the case m(¥) = wk-p , 0= ¥ =¥, Q(¥) = \pm—é’ ¥x =¥ = ¥, where k and m are
arbitrary integers, and 0 =pu, 6 <1l. Wedenote k+ m—pu —06 =n—¢e. The solution of Eq. (38) is then

(41)
1= 9 i
O(p V) =% 2 ZV(MPI«:‘FZ ) )
a=n—e, v lTnte , M=2—nde 1<<a<?. (42)
2—n+t¢
The norm of the transform is

o, M 9 9 M 43
N2 (py) = j O (p, 1) dY = —4“ G’E) [Z\Qz (Vi) = Zy, 1 (V) Zyo1 (V) ] » Yo = M Phqf02~ (43)

0 R

Here and above Zv(y) is a cylindrical function of order v. (An error was committed in (7] in calculating the
norm. The correct value of the factor in front of the square bracket in the denominator of expression (8) is

-Z— L ) Since,

Cle, p)={CO, p+ | [—é W (5, p)n()—Kipw 0] explP(x, p)lde Jexp[—P(x, po)l, (44)
0

x

P(x, py) = BDypi ye g b y Z (x)n(x)dx,
J ) B
0
the required function is
Cie, V) = 3 0@ Cl, p) N2 (p,), “8)
k=1
where the summation is performed over the increasing roots of the equation
- 14a —a-+-M—1 (47)

l1—a
2

1
Y, ? Zy(n)+ - Y, P plZes (V) — Zy, 1 (W) = 0.
1

The transition to the (x, y) space is realized by replacing ¥ by the equivalent expression [ f) Y ]I_k” .
n(x

It should be noted that the method suggested for solving Eq. (37) is also applicable for solving the equa-
tions of convective diffusion to spherical bodies in liquid or gas flow, such as drops, bubbles, and capillary-
porous bodies of spherical shape. These equations have the form of relationship (37).

According to the general theory of eigenfunction expansion of the Sturm— Liouville problem [3], the co-
efficients of Egs. (1), (26), (34), as well as the functions g;(t) and p,(t) do not have singularities, i.e., infi-
nite discontinuities. Uniform convergence of the series (25) and (46), as well as the reality of the corres-
ponding eigenvalues [3], follow from expansion theorems of this theory. The positiveness of these numbers
follows from properties of Bessel functions and from the shape of the corresponding equations for finding
them. -
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STEADY-STATE TEMPERATURE DISTRIBUTION IN AN
INHOMOGENEOUS MEDIUM WITH LOCAL INCLUSIONS

Yu. I. Malov and L. K. Martinson UDC 536.24
We present a modification of the method of image regions [G. I. Marchuk, Methods of Nﬁmeri—
cal Mathematics, Springer-Verlag [1975)]to solve the boundary-value problem for the steady-
state temperature distribution in an irregular multiply connected region.
We consider the boundary-value problem for the temperature distribution u(x) in the multiply connected
N
region G =T\ U o, (Fig. 1), where I ={(x, x,): 0 =x, =L, 0 s x, = I}, and wg is a region which corres-

s=1

ponds to a local inclusion. At the boundary of the inclusion, the heat flux is zero:

div [H (x) grad u (x)] = — [ (x), x = (xy, %) €QG, )
om0, — | 0 (s=1,2 ..., M)
on y,

Here H(x) > 0 is the heat-conduction coefficient of the inhomogeneous medium; f(x) > 0, volume density of the

heat sources; I', boundary of the rectangular region il; y4, boundary of the local inclusion wg; and n, normal
to the contour vy g.

We shall present a method which makes it possible to find a rigorous solution of problem (1) for any

shape and number of local inclusions wg. Together with (1) we shall formulate an auxiliary problem in the
rectangular region II:

2 ’ @)
AN 0 {n(x; £) jﬁ,]thf(x)? xc,
i Oxp, 0%y, |
ol =0, (3)
where 7n(x; €) and F(x) are piecewise-smooth functions which are defined as follows:
N (x: 8):{H(x), x€q, Fey— |F0) x€G,
e=const =0, xCII\ G, |0, xeII\G.
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